Application of Artificial Intelligence with Natural Language Processing for qualitative research texts in the medical-patient relationship with mental illness through the use of mobile technologies

Authors

  • José Vicente Sancho Escrivá Universitat Jaume I
  • Carlos Fanjul Peyró Universitat Jaume I
  • María de la Iglesia Vayá Unidad Mixta de Imagen Biomédica FISABIO-CIPF
  • Joaquin A. Montell Centro de Investigación Príncipe Felipe. Unidad Mixta IB
  • María José Escartí Fabra Hospital Clínico Valencia, CIBERSAM Valencia

DOI:

https://doi.org/10.35669/rcys.2020.10(1).19-41

Keywords:

artificial intelligence, natural language processing, machine learning, communication, social science, mHealth, mental health

Abstract

Artificial Intelligence (AI) continues to position itself in society as a benchmark for technological progress. Within this field, Natural Language Processing (NLP) reaches great acceptance in disciplines that work with high volumes of data (Big Data). In this framework we want to see what do these algorithms contribute with, but applied to communication in the field of mental health. We establish this methodology with NLP based on previous qualitative observations in transcribed texts of focus groups. These texts were obtained from focus groups carried out on patients with mental illnesses in order to understand whether the application of this methodology contributes to any improvement on the analysis of data, which has been shown in previous researches. However, this research has been applied in a novel way in the field of mental health. To do this, scripts based on Python code have been executed and the texts have been purified, classifying the word strings into entities called tokens and eliminating stopwords. Subsequently, the frequency of words and the connection of sentences have been analyzed, obtaining a set of structures in which to apply Machine Learning techniques using word2vec and generating vectors on the data, which are represented with n-dimensional graphics where a new vocabulary based on proximity words is created. We are applying a method that without algorithmic learning we would be unable to obtain this type of information in the previous analysis of qualitative research.The main themes found with traditional qualitative analysis are identified in the analysis, mechanizing the process and facilitating it. It is also shown that this methodology is applicable in mental health as in other population groups.

Downloads

Download data is not yet available.

Author Biography

José Vicente Sancho Escrivá, Universitat Jaume I

José Vicente Sancho Escrivá al400282@uji.es: Licenciado en Ciencias de la información, publicidad y RRPP. Profesional de la comunicación digital especialista en tecnología mobile y docente en diferentes universidades españolas en materias relacionadas con la publicidad y la comunicación digital.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. Disponible en: https://bit.ly/3bQSEZm

Aghion, P., Jones, B. F., & Jones, C. I. (2017). Artificial intelligence and economic growth (No. w23928). National Bureau of Economic Research. Disponible en: https://bit.ly/2VNLUWL

Bertoldi, S., Fiorito, M. E., & Álvarez, M. (2006). Grupo Focal y Desarrollo local: aportes para una articulación teórico-metodológica. Ciencia, docencia y tecnología, 17(33), 111-131. Disponible en: https://bit.ly/2yRjRwr

Brunn, M., Diefenbacher, A., Courtet, P., & Genieys, W. (2020). The Future is Knocking: How Artificial Intelligence Will Fundamentally Change Psychiatry. Academic Psychiatry, Online. Disponible en: https://bit.ly/3dUvEcQ

Bustos, A., Pertusa, A., Salinas, J. M., & de la Iglesia-Vayá, M. (2019). Padchest: A large chest x-ray image dataset with multi-label annotated reports. arXiv preprint arXiv:1901.07441. Disponible en: https://bit.ly/2KLyjbX

Calero, J. L. (2000). Investigación cualitativa y cuantitativa. Problemas no resueltos en los debates actuales. Rev. Cubana Endocrinol, 11(3), 192-8. Disponible en: https://go.aws/2yUCgbA

Gibbs, A. (1997). Focus groups. Social research update, 19(8), 1-8. Disponible en:

https://bit.ly/3bQTdCG

Guetterman, T. C., Chang, T., DeJonckheere, M., Basu, T., Scruggs, E., & Vydiswaran, V. (2018). Augmenting Qualitative Text Analysis with Natural Language Processing: Methodological Study. Journal of medical Internet research, 20(6), e231. Disponible en: https://bit.ly/3aP3ded

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature medicine, 25(1), 30–36. Disponible en: https://bit.ly/3h6L4go

Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. Disponible en: https://stanford.io/3cGRU8J

Liddy, E. D. (2001). Natural language processing. Disponible en: https://bit.ly/2zHhpJp

Loper, E., & Bird, S. (2002). NLTK: the natural language toolkit. arXiv preprint cs/0205028. Disponible en: https://bit.ly/2VJV1Yi

Lupiáñez-Villanueva, F. (2011). Salud e internet: más allá de la calidad de la información. Revista española de cardiología, 64(10), 849-850. Disponible en: https://bit.ly/3bS3SwM

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119). Disponible en: https://bit.ly/2KI7CVF

Morgan, D. L., Krueger, R. A., & Scannell, A. U. (1998). Planning focus groups. Sage. Disponible en: https://bit.ly/2Soo69A

Perrault, R., Shoham Y., Brynjolfsson E., Clark J., Etchemendy J., Grosz, B., Lyons, T., Manyika T., Mishra, S., & Niebles J.C. (2019). “The AI Index 2019 Annual Report”, AI Index Steering Committee, Human-Centered AI Institute, Stanford University, Stanford, CA, December 2019. Disponible en: https://stanford.io/2KFNLGN

Powell, R. A., & Single, H. M. (1996). Focus groups. International journal for quality in health care, 8(5), 499-504. Disponible en: https://bit.ly/3aKAWFt

Rodriguez, M., Sivic, J., Laptev, I., & Audibert, J. Y. (2011, November). Data-driven crowd analysis in videos. In 2011 International Conference on Computer Vision (pp. 1235-1242). IEEE. Disponible en: https://bit.ly/2SfWiV1

Rong, G., Mendez, A., Assi, E. B., Zhao, B., & Sawan, M. (2020). Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering. Disponible en: https://bit.ly/30mAgEO

Steckler, A., McLeroy, K. R., Goodman, R. M., Bird, S. T., & McCormick, L. (1992). Toward Integrating Qualitative and Quantitative Methods: An Introduction. Health Education Quarterly, 19(1), 1–8. Disponible en: https://bit.ly/2YfU6k7

Taylor, S. J., & Bogdan, R. (1987). Introducción a los métodos cualitativos de investigación (Vol. 1). Barcelona: Paidós. Disponible en: https://go.aws/2SfsA2b

Turney, L., & Pocknee, C. (2005). Virtual focus groups: New frontiers in research. International Journal of Qualitative Methods, 4(2), 32-43. Disponible en: https://bit.ly/3bPzByB

Webster, J. J., & Kit, C. (1992). Tokenization as the initial phase in NLP. In COLING 1992 Volume 4: The 15th International Conference on Computational Linguistics. Disponible en: https://bit.ly/2SktsCP

Published

2020-08-06

How to Cite

Sancho Escrivá, J. V., Fanjul Peyró, C., de la Iglesia Vayá, . M. ., Montell, J. A. ., & Escartí Fabra, . M. J. (2020). Application of Artificial Intelligence with Natural Language Processing for qualitative research texts in the medical-patient relationship with mental illness through the use of mobile technologies. Revista De Comunicación Y Salud, 10(1), 19–41. https://doi.org/10.35669/rcys.2020.10(1).19-41

Issue

Section

Articles

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.