Authorized Twitter voices during the COVID-19 pandemic: actors, vocabulary, and feelings as an interpretive framework for ordinary users
DOI:
https://doi.org/10.35669/rcys.2020.10(2).549-568Keywords:
Confinement, coronavirus, COVID-19, gender, government, health, health crisis, media, pandemic, twitterAbstract
This work addresses the communicative role of authorized voices on Twitter during the COVID-19 pandemic and their interaction with ordinary users. They are defined as public profile users who have a big number of followers, and whose messages are massively disseminated on the platform by ordinary users. A set of tweets was collected over two months through the Twitter API, and then a subset of data was formed with the tweets replicated more than 100 times. Labeling, data mining, and sentiment analysis techniques were applied to it. It is observed that the interpretive framework of the pandemic is modeled by the media, although there are perceptions of ordinary users about the pandemic as a time of economic, health, political and personal crisis that are not present in the authorized voices. It is concluded that the media and front-line government officials are the ones that achieved the greatest adherence and amplification of the word by ordinary users, although there is a significant gender gap between the voices of men and those of women.
Downloads
References
Burgess, J., & Baym, N. K. (2020). Twitter: A biography. New York University Press.
Calvo, E., & Aruguete, N. (2020). Fake news, trolls y otros encantos: Cómo funcionan. Buenos Aires: Siglo XXI Editores.
Camarena, M. E., Saavedra, M. L., & Saldívar, D. D. (2015). Panorama del género en México: Situación actual. Revista Guillermo de Ockham, 13(2), 77-87. doi: 10.21500/22563202.2066
Castells, M. (2012). Redes de indignación y esperanza: Los movimientos sociales en la era de internet. Alianza Editorial.
Cebral Loureda y Sued Palmeiro (2020) La percepción de COVID-19 en Twitter. Análisis computacional de la conversación pública en lengua española. En proceso de publicación
Ceciarini, S. (2019). Women in Politics: Local and European Trends. The Council of European Municipalities and Regions (CEMR).
Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data: Political Homophily on Twitter. Journal of Communication, 64(2), 317-332. doi: 10.1111/jcom.12084
Csárdi, G. (2019). Package ‘igraph’. Network Analysis and Visualization. https://cran.r-project.org/package=igraph
De Miguel, R. de M., Hanitzsch, T., Fernández, S. P., & Conde, M. R. B. (2017). Mujeres periodistas en España: Análisis de las características sociodemográficas y de la brecha de género. El profesional de la información, 26(3), 497-506. http://www.elprofesionaldelainformacion.com/contenidos/2017/may/16_esp.pdf
El Universal. (2020). ¿Cómo es el consumo digital en México en el marco de la pandemia? El Universal. Recuperado de https://www.eluniversal.com.mx/techbit/como-es-el-consumo-digital-en-mexico-en-el-marco-de-la-pandemia
Gao, J., Zheng, P., Jia, Y., Chen, H., Mao, Y., Chen, S., Wang, Y., Fu, H., & Dai, J. (2020). Mental health problems and social media exposure during COVID-19 outbreak. PLOS ONE, 15(4), e0231924. doi: 10.1371/journal.pone.0231924
Frankze, A., Bechmann, A., Zimmer, M., & Ess, C. (s. f.). Internet Research: Ethical Guidelines 3.0.
Han, X., Wang, J., Zhang, M., & Wang, X. (2020). Using Social Media to Mine and Analyze Public Opinion Related to COVID-19 in China. International Journal of Environmental Research and Public Health, 17(8). doi: 10.3390/ijerph17082788
Kearney, M. (2020). Package ‘RTweet’. https://cran.r-project.org/web/packages/rtweet/rtweet.pdf
Kullar, R., Goff, D. A., Gauthier, T. P., & Smith, T. C. (2020). To Tweet or Not to Tweet—A Review of the Viral Power of Twitter for Infectious Diseases. Current Infectious Disease Reports, 22(6), 14. https://doi.org/10.1007/s11908-020-00723-0
Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a Social Network or a News Media?. Proceedings of the 19th International Conference on World Wide Web, 591–600. doi: 10.1145/1772690.1772751
Lin Pedersen, T (2020a). Package ‘ggraph’. https://ggraph.data-imaginist.com
Lin Pedersen, T. (2020b). Package ‘tidygraph’. A Tidy API for Graph Manipulation. Recuperado de https://cran.r-project.org/package=tidygraph
Mohammad, S., Kiritchenko, S., & Zhu, X. (2013). NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets. ArXiv: 1308.6242
Moreno, A., & Redondo, T. (2016). Text Analytics: The convergence of Big Data and Artificial Intelligence. International Journal of Interactive Multimedia and Artificial Intelligence, 3 (Special Issue on Big Data and AI, 6), 57-64. doi: 10.9781/ijimai.2016.369
Newman, N., Fletcher, R., Schulz, A., Simge, A., & Kleis Nielsen, C. (2020). Reuters Institute Digital News Report 2020. Reuters Institute for the Study of Journalism. Recuperado de http://www.digitalnewsreport.org
Percastre-Mendizábal, S., Pont-Sorribes, C., & Suau-Gomila, G. (2019). La gestión comunicativa en redes sociales digitales de la emergencia del Ébola en España. The communicative management in social media of the emergence of Ebola in Spain., 80-90. doi: 10.20318/recs.2019.4437
Robinson, D. (2020). Package ‘widyr’. Widen, process, and re-tidy a dataset. https://cran.r-project.org/package=widyr
Rogers, Richard. (2018). Otherwise Engaged: Social Media from Vanity Metrics to Critical Analytics. International Journal of Communication, 12(0), 23. Recuperado de https://ijoc.org/index.php/ijoc/article/view/6407
Roy, M., Moreau, N., Rousseau, C., Mercier, A., Wilson, A., & Atlani-Duault, L. (2020). Ebola and Localized Blame on Social Media: Analysis of Twitter and Facebook Conversations During the 2014–2015 Ebola Epidemic. Culture, Medicine, and Psychiatry, 44(1), 56-79. doi: 10.1007/s11013-019-09635-8
Rufai, S. R., & Bunce, C. (2020). World leaders’ usage of Twitter in response to the COVID-19 pandemic: A content analysis. Journal of Public Health, 42(3), 510-516. doi: 10.1093/pubmed/fdaa049
Robinson, D., & Silge, J. (2020). Package ‘tidytext’. Text Mining using «dplyr», «ggplot2», and Other Tidy Tools (0.2.4). Recuperado de https://cran.r-project.org/package=tidytext
Thelwall, M., & Thelwall, S. (2020). Covid-19 tweeting in English: Gender differences. El Profesional de La Información, 29(3). doi: 10.3145/epi.2020.may.01
Towers, S., Afzal, S., Bernal, G., Bliss, N., Brown, S., Espinoza, B., Jackson, J., Judson-Garcia, J., Khan, M., Lin, M., Mamada, R., Moreno, V. M., Nazari, F., Okuneye, K., Ross, M. L., Rodriguez, C., Medlock, J., Ebert, D., & Castillo-Chavez, C. (2015). Mass Media and the Contagion of Fear: The Case of Ebola in America. PLOS ONE, 10(6), e0129179. doi: 10.1371/journal.pone.0129179
Vega Montiel, A. (2014). Igualdad de género, poder y comunicación: Las mujeres en la propiedad, dirección y puestos de toma de decisión. Revista de Estudios de Género La Ventana, 5(40), 186-212.
Victoria-Mas, M. (2020). Report: News consumption patterns and misinformation perceptions during the COVID-19 crisis in Spain. CharleMagne Prize Academy. Recuperado de https://www.charlemagneprizeacademy.com/en/publications/report-news-consumption-patterns-and-misinformation-perceptions-during-the-covid-19-crisis-in-spain
Wickham, H. (2019). Package ‘tidyverse’. https://cran.r-project.org/package=tidyverse
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista de Comunicación y Salud
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Disclaimer: As of 2023, RCyS is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Articles from 2011 to 2022 are under a Creative Commons CC BY 4.0 License that allows copying and redistributing the material in any medium or format, remixing, transforming and building upon the material for any purpose, including commercial.
We also inform that RCyS is adhered to the Declaration of Berlin.